Predictive models and new surveillance & treatment methods

Daniel Spring

Australian Centre For Biodiversity Monash University

Terminology

Surveillance technology

- sensor, platform

Surveillance scheduling

 method for choosing where & when to search

Detectability of RIFA

- probability of finding colony/individual where present
- Depends on: sensor, colony attributes (size, no.), environ.

Surveillance coverage

- proportion of area of interest searched/yr

Surveillance Strategy

- Combination of technology & scheduling method
 - EG 1: remote sensing once/yr over entire AOI & sniffer dogs in places selected with remote sensing

- EG 2: Citizen monitoring continuously over entire AOI & sniffer dogs within specified buffer around nests

Predictive models

What they do

• Predict areas where individuals likely to be present

How they are used

• To help target search/treatment effort

Predictive Models - A Weather Analogy

- Identify current rain locations
- Predict future rain locations based on past locations & past movement
- RIFA colonies stay in one place for long time - if know recent locations, can eradicate
- But only some locations searched & not all colonies detectable
 - so prediction useful

Predictive accuracy, search and treatment

- If perfectly predict all individuals, no need for:
 - High-tech surveillance technologies
 - Search scheduling
 - Broad-bait treatment
 - Just need nest injections (if 100% mortality)
- **Real world**: Cannot perfectly predict can only predict areas where <u>some</u> individuals are present. How to find/remove remaining individuals?
 - Search/treat larger area than actually infested
 - How much larger?

Main Questions in Eradication Programs

- 1. Is eradication feasible?
- 2. What search-treatment technologies & scheduling method gives greatest probability of eradication?
- 3. What uncertain parameters affect 1 & 2 most?
 - Helps to guide research efforts

Monash Models

Model 1: Schmidt, Spring et al. (in press, Ecol Apps)

Model 2: Report to BQCC

Models Used To Assist Biosecurity Queensland Control Center

- 1. Estimated eradication feasibility
- 2. Identified improved search-treatment strategies
- 3. Identified uncertain biological parameters that has biggest effect on eradication feasibility and best eradication strategy

Approach

- 1. Estimated RIFA reproduction & dispersal
 - Used statistical model in absence of direct observations of movement
 - Made assumptions about biological parameters
 - Eg: colony clusters originate from single queen
 - Inbreeding occurs so only 1 nest for invasion spread
- 2. Simulated reproduction & dispersal under different search and removal strategies

Types of data used

- Spatial data
- Other data
 - Treatment mortality
 - Broadbait aerial, ground, ATV
 - Nest injection
 - Search sensitivity
 - Search & treatment costs/ha

Habitat Suitability

• red represents highest suitability for fire ants, estimated by R. George

Search & Detection Maps 2001 - 2009

Urban-rural map

Passive detections more likely to occur in urban areas

Prediction

Biology + management effectiveness \rightarrow spread prediction

(growth, dispersal) + (search/treatment effect.) \rightarrow spread

Inferring spread process from data is difficult

Eg: Estimating frequency of long jumps

Multiple uncertainties

Assumptions to simplify inference

Need input from RIFA scientists

Future spread similar to past spread

- 1. Is this true?
- 2. A bigger proportion of monogyne nests now?

Younger nests come from older nests

- How to estimate colony age?
- Are bigger clusters older???
 - Depends on whether come from 1 or >1 queen?
- Important because older colonies produced propagules for longer
- Influences allocation of search/treatment resources

Eradication Feasibility Depends Mainly On

Area searched & sensitivity of search

- Must search a large area to find "jumpers"
 - Remote sensing important

Treatment cost and mortality

• Large-scale broad-baiting cost-effective if low cost and high mortality (>0.90/round)

Biological Factors

- Propagule "escape" rate
- Extinction threshold
- Frequency of "jumps"

Relative importance for eradication

Biggest gains, in order:

- 1. Introduce remote sensing
- 2. Reduce radius of follow-up surveillance use resource savings to increase treatment
- 3. Use probability search instead of standard protocol
- 4. Increase sensitivity of follow-up search–Eg introduce "sniffer dogs"