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Abstract

Changes to the Earth’s climate may affect the distribution of countless species. Understanding the potential
distribution of known invasive species under an altered climate is vital to predicting impacts and developing
management policy. The present study employs ecological niche modeling to construct the global potential distri-
bution range of the yellow crazy ant (Anoplolepis gracilipes) using past, current and future climate scenarios.
Three modeling algorithms, GARP, BioClim and Environmental Distance, were used in a comparative analysis.
Output from the models suggest firstly that thisinsect originated from south Asia, expanded into Europe and then
into Afrotropical regions, after which it formed its current distribution. Second, the invasive risk of A. gracilipes
under future climatic change scenarios will become greater because of an extension of suitable environmental
conditionsin higher latitudes. Third, when compared to the GARP model, BioClim and Environmental Distance
models were better at modeling a species’ ancestral distribution. These findings are discussed in light of the

predictive accuracy of these models.
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INTRODUCTION

An understanding of the potential distribution of an
invasive species aids in the prediction of impacts associ-
ated with, and usually caused by, that species (Kriticos et
al. 2005). Control effortsimposed at an early stage of in-
vasion are more likely to be successful than once aninva
sion has progressed. If abiotic factors that influence inva-
sion success for an invasive ant species are identified, we
can use these factors to predict where and when each
specieswill befound, resulting in more informed manage-
ment decisions.

Correspondence: Youhua Chen, College of Life Sciences, Wuhan
University, Loujia Mountain Road, Wuchang Distinct, Wuhan
City, 430072, Hubei Province, China. Email: haydi @126.com

14uts

The yellow crazy ant (Anoplolepis gracilipes) has re-
ceived increasing attention in recent times (Haines &
Haines1978; Holway et al. 2002; Gerlach 2004; Feldhaar et
al. 2006; Drescher et al. 2007). This has been due to the
negative impacts of this species on native vertebrate and
invertebrate popul ations resulting from yellow crazy ant
colonization of new areas. For example, in addition to at-
tacking hatchling birds and reptiles A. gracilipes preys
upon adult small mammals, birds and reptiles (Hill et al.
2003; Gerlach 2004; Drescher et al. 2007). Thisinsect is
among the top 100 invasive species, aslisted by the Inter-
national Union for Conservation of Nature (Lowe et al.
2000).

Although its exact origin remains unknown (\Wetterer
2005), the yellow crazy ant has caused serious problems
in infected areas, and the speed with which it spreadsis
almost unrivaled. Currently, most studies on this species
are focused on the autoecology or population structure
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(Gerlach 2004, Abbott 2005, 2006; Feldhaar et al. 2006;
Drescher et al. 2007), and understanding its spatial distri-
butional pattern (Wetterer 2005; Harris et al. 2005; Com-
monwealth of Australia 2006; Harris & Barker 2007);
however, the trans-continental distribution trend has not
been investigated as comprehensively (Wetterer 2005). The
present study aims to develop an invasive model for the
yellow crazy ant at a global scale in order to assess the
potential impacts of climate change on the spatial pattern
of this species.

Ecological niche modeling, in response to the need of
predicting exotic species’ distribution, has gained popu-
larity in recent times and the application of thistechnique
to ant speciesis growing (Harris et al. 2005; Morrison et
al. 2005; Xueet al. 2005; Harris& Barker 2007; Ulrichs &
Hopper 2007; Ward 2007). Theknown climatic requirements
or tolerances of a species, once parameterized and used in
modeling, are termed climate envelopes or ecological re-
quirements (Berry et al. 2002). There are a suite of tools
available to predict the potential distribution of species,
with these tools varying in the mathematical technique
and framework they employ. Exemplary productsinclude
BIOCLIM (Busby 1991), DOMAIN (Carpenter et al. 1993),
CLIMEX (Sutherst et al. 1995), GARP (Stockwell & Peters
1999), and Environmental Distance (Sutton et al. 2007).
This study will perform ecological niche modeling for the
yellow crazy ant under different climate change scenarios
and utilize BioClim, GARP and Environmental Distance
models.

MATERIALSAND METHODS

Yellow crazy ant distribution data

Records of the current global distribution A. gracilipes
were obtained from James Wetterer (personal communica-
tion 2006). Excluding those that do not have explicit geo-
logical coordinates, the remaining 818 geo-referenced oc-
currence recordswere used astheinput datafor prediction.

M odeling tools

Predicting the geographic distribution of this species
was done using the open source software OpenModeller
(Verson 1.0.5, Sutton et al. 2007). OpenModeller wasorigi-
nally developed under the GPL License, based on severa
algorithms derived from ecological niches of species and
from evaluating correlations between distributional oc-
currences and environmental characteristics. The software
includes the following models: GARP, Bioclim, Climate
Space Model, Environmental Distance, Distance to
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Average, and Minimum Distance. | utilized three repre-
sentative models: GARP, BioClim and Environmental Dis-
tance for combined modeling. The GARP model has been
successfully applied in many studies and typically has
two types, GARP with best subsets and GARP with single
performance. The former was chosen and referred to sim-
ply as GARP throughout this paper. GARP is a genetic
algorithm that creates ecological niche modelsfor species.
The models describe environmental conditions under
which the species should be able to maintain populations
(Sutton et al. 2007). BioClim isan environmental envelope
algorithm that identifies locations that have environmen-
tal values that fall within the range of values measured
from the occurrence dataset (Nix 1986, Busby 1991,
Hernandez et al. 2006). It iswell-known for itslong-term
and far-ranging application. The Environmental Distance
model isageneric agorithm based on environmental dis-
similarity metrics (Sutton et al. 2007). The reason for se-
lecting these three models was that some algorithms in
OpenModeller are similar. For example, Environmental
Distance, Distance to Average and Minimum Distance
models are similar because they are based on distance
measures. For brevity, | only selected Environmental Dis-
tance as the representative for this comparative anaysis.
All the models are projected onto geographic maps and
the geographi c information system software ArcView v3.3
(ESRI 2001) is used to display the potential distribution
expanding aress.

Environmental data

OpenModeller offersflexibility in the selection of base
environmental datalayers. | used the following variables:
the environmental layers provided by DesktopGARP,
which include elevation, slope, aspect and climatic
variables. Additional variableswere also obtained online:
the global vegetation layer was collected from National
Geophysical Data Center (NGDG 2008). Thelayersgloba
soil PH, soil moisture, soil organic carbon, potential
vegetation, net primary productivity, growing degree days,
average relative humidity, croplands percentage and po-
tential evapotranspiration were obtained from Atlas of the
Biosphere (2002). Although these 23 layersin al have dif-
ferent pixel sizes, they do not prematurely stop the imple-
mentation of OpenModeller. Thea gorithm GARPwith best
subsets in OpenModeller was used as the prediction pro-
cedure in this study.

Thefuture environmental envel opes were derived from
the predicted climate scenarios of the Intergovernmental
Panel on Climate Change (IPCC). Most climate change
studies use estimates of regional climate change from glo-
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Figure 1 Current potential distribution range of A. gracilipes. (A) GARP model; (B) BioClim model; (C) Environmental Distance
model. Circle points indicate the observed occurrence of A. gracilipes. For individual model, the grey colors from light to heavy
indicate the predicted probabilities from low to high.
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Figure 2 Future potential distribution range of A. gracilipes (2050 year). (A) GARP model; (B) BioClim model; (C) Environmental
Distance model. Circle points indicate the observed occurrence of A. gracilipes. For individual model, the grey colors from light to
heavy indicate the predicted probabilities from low to high.
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Figure 3 Past potential distribution range of A. gracilipes (6000 yr B.P.) (A) GARP model; (B) BioClim model; (C) Environmental
Distance model. Circle points indicate the observed occurrence of A gracilipes. For individual model, the grey colors from light to
heavy indicate the predicted probabilities from low to high.
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bal circulation models (GCMs), while the modeled data
distributed by IPCC isregarded as one of the most recent
GCM climate change scenarios recommended for climate
change impact studies (Alexandrov et al. 2002). GCMs
utilize physical equations and move heat, water vapor and
momentum on a grid-box basis over the Earth’s surface
and at discrete levelsin the atmospheric column. GCMs
are also coupled to ocean models which move heat, mo-
mentum and salt within surface layers and at depth (Jones
et al. 2003). Thevariablesavailablefromthe |PCCincluded
precipitation, evaporation, annual minimal temperature,
annual maximal temperature, and annual average
temperature. These factors, typically being the output of
GCMs, represent the global surface climate characteris-
ticsover land aress.

The GCM used here is the second Hadley Centre
coupled ocean-atmosphere integration (HadCM2). There
are two experiment integrations in HadCM 2, that is,
HadCM2GG and HadCM 2GS, and both predict the rise of
globa surface temperature between 3°C to 4°C by the year
2100. The experimental scenario | used herein is the
HadCM 2GS, which usesthe combined forcing of al green-
house gases as an equivalent CO, concentration and the
negative forcing from sulfate aerosols. Compared to
HadCM2GG (only using combined forcing of all green-
house gases), HadCM 2GS had a better fit to historic ob-
servation (Collison et al. 2000). Specificaly, the resulting
datafor my modeling isthe average output (HadCM 2GSX)
of the four members HadCM2GS1 to HadCM 2G$S4.
HadCM2 has a spatial resolution of 2.5°x3.75° (latitude
by longitude), and the representation produces agrid box
resolution of 96x73 grid cells (please refer to theinforma-
tion homepage of HadCM2 model, John et al. 1997).

Past predicted climatic data were downloaded from the
website of the Paleoclimate Modeling Intercomparison
Project (Joussaume et al. 1999; PMIP 2005). | used the
prediction model CCSR1 output data as the basal past
predicted climatic data. Thefollowing environmental vari-
ables were used to substitute the same variables of the
current environmental envelope to form the paleoclimatic
data sets. evaporation, elevation, total precipitation and
surface air temperature. The prediction time scenario is at
about 6000 yr B.P. (years before present), corresponding
to the period of the middle Holocene.

Model CCSR1 (Numaguti et d. 1995) isbased onasmple
global atmospheric model first developed at the Univer-
sity of Tokyo and further refined as the collaboration be-
tween Center for Climate System Research (CCSR) and
the National Institute of Environmental Studies (NIES). It
isintended for use as a community climate model. The
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model isidentical to the latest AMIP model (Gates 1992)
except for different initial conditions and the Earth’s or-
bital parameters. For PMIP, CCSR1 consists of runs 21, 6
and 0.

RESULTS

Current potential distribution

The worldwide potentia range from the three models
was consistent. Figures 1A, B, C show the current poten-
tial global range generated by the three models. The re-
sults showed that A. gracilipes has arelatively wide suit-
able range. The predicted distribution could cover awide
latitudinal range between 43 N and 46 S.

InAsig, alarge areafrom the Yangtze River in Chinato
tropical Asian latitudes (e.g. the Indian peninsula, Indo-
China countries and the Malaysian peninsula) was pre-
dicted to be highly susceptible to invasion by thisinsect.
In addition, most areas of the Korean peninsulaand Japan
were identified as having median affected risk.

In Africa, the highest risk from thisinsect occurred be-
tween 30 S and 15 N and was consistent among the three
models. Most regions from tropical rainforest and sub-
tropical monsoon climates were preferential areas for A.
gracilipes. Nearly the entire Afro tropical region, except
the south-western tip (Northern Cape Province of South
Africa, and most areas of Namibia), was at high-risk in
being infected by thisinsect.

InAustralasia, suitable areas for thisinsect could reach
to the north of New Zealand. In Europe, most areas of
southern Europe including the Iberian Peninsula, France
and Yugod avia showed significant risk from crazy yellow
ant invasion. Environmental Distancemodel (Fig. 1C) gen-
erated agreater number of suitable areasin Europefor this
species compared to the other two models. In South
America, most of the Amazonian tropical forest zones had
ahigh probability of invasion from thisinsect, as does the
southeastern area of North America.

Future potential distribution in 2050

Under aclimatic scenario of the year 2050 (Figs. 2A, B,
and C), the expansion of thisinsect would take place across
Africa, Asiaand Europe. Of noteisthat there were north-
ward and southward shiftsin the area of climatic prefer-
ence for this ant, which was particularly evident in North
America, Europe, South America and Australia. For
example, in the map generated by the Environmental Dis-
tance model, North America, especially along costal USA,
has a high probability of invasion (Fig. 2C). Most areasin
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South America, Europe and Austral asia became suscep-
tible under the Environmental Distance model (Fig. 2C).
All three models had consistently predicted that Australia
became arisk under climate a change scenario of 2050.
BioClim and GARP model s generated similar output maps,
which indicated that the suitable range was decreasing
(Figs. 2A, B). Nonethel ess, Environmental Distance model
seemed to overestimate future potential range because
most arid areasin Africaand Australiawere predicted suit-
able(Fig. 2C).

Past potential distribution

In ancestral distribution modeling, two of the three
models, BioClim and Environmental Distance, generated
similar results (Figs. 3B and C), while GARP overestimated
the past potential range of A. gracilipes (Fig. 3A). The
predicted range from GARP remained constant compared
to the current modeled range. For BioClim and Environ-
mental Distance models, the predicted range indicated that
south Asia was highly suitable for A. gracilipesin the
early Holocene compared to current areas of predicted
suitability. In addition, partial regionsfrom Europe, South
America, and North Americawere shown to be at risk of
invasion of thisinsect. Africawas found to have low oc-
currence probability for A. gracilipes in the two models
and limited areas in Africawere found suitable (Figs. 3B
and C).

DISCUSSION

Potential distribution of A. gracilipes

A. gracilipesisadangerousinvasive speciesfor indig-
enous animals, and its origin and possible global pattern
of invasion need to be determined. Based on the potential
ranges of expansion at different time scenarios using al-
ternative modeling algorithms, six conclusions can be
made.

First, the potential distribution under past, current and
future climatic conditions suggests that A. gracilipes pre-
ferswarm and humid areas (Li et al. 2006). Ocean islands
and peninsulas showed high risk to invasion from A.
gracilipes. The Korean, Arabian and Iberian peninsulas,
Sulawesi islands and Papua New Guinea were predicted
to have a high invasive risk. It is clear from GARP that
predicted climate change around the year 2050 will greatly
increase the areas at risk of invasion by A. gracilipes com-
pared to its current distribution. Under the current cli-
matic envelope, the suitable distribution range may in-
clude the latitudinal areafrom 35 Sand 35 N worldwide.
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Under a 2050 climatic scenario, its suitable range could
extend to more northern areas. Interestingly, the recon-
struction of the ancestral potential distributional range of
A. gracilipes in the middle Holocene showed that A.
gracilipes favored high latitudinal zones.

Second, | employed ecological niche modeling to re-
construct the ancestral distributional range (Peterson et
al. 2004; Yesson & Culbam 2006a) using three algorithms.
This methodology may offer new insights into historical
invasion dynamics. The results indicated that south Asia
might have been the origin of diversification for A.
gracilipes because two of the models (BioClim and Envi-
ronmental Distance) have supported that A. gracilipes
were mainly located in South Asia (high probability) inthe
early Holocene, whilst the Afrotropical zone was showed
the low occurrence of the insect (Figs. 3B, C). The result
of GARPinmodeling ancestral distribution of A. gracilipes
is not satisfied because the result map could cover most
of the Afrotropical zone and South Asia (Fig. 3A), which
make defining its origin difficult. Therefore focusing on
the other two models, which produced more focused re-
sults may yield some insight. Output from BioClim and
Environmental Distance indicated that suitable areasin
south Asiain 6000 yr B.P. were almost kept constant to
that of current model (Figs. 3B, C). Europe might have
played the role as a bridge to transfer thisinsect to Africa
in the early Holocene because it @l so has the occurrence
probabilities in Europe, as supported by the three models
(Figs. 3A, B and C). Based on these findings, | propose
that the historical dispersal pattern of thisinsect took the
following form: originating from south Asia, A. gracilipes
first expanded to Europe and then transferred into
Afrotropical regions. BioClim and Environmental Distance
seemed to be better candidates when modeling past cli-
matic scenario because they generated similar outputs
under past climatic conditions. BioClim, along with Maxent
model, have been successfully applied to construct an-
cestral niches for Cyclamen (Yesson & Culham 2006a,
2006b). GARP may not function as well in this area be-
cause the resulting output for A. gracilipes remained
mostly unchanged from its current scenario.

Third, all three models supported a latitudinal shift of
suitable distribution range for A. gracilipes under climate
change scenarios. For example, in Australia, al models
predicted the country will increasingly face ahigh risk of
invasion (Figs. 2A, B and C); however, under the current
climatic condition, the risk maps from all models did not
include Australia.

Fourth, Wetterer (2005) proposed that the rainforest
areas of the world would be suitable areas for this insect
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based on empirical observations; whilst my study illus-
trated the finer resolution of potential range using alterna-
tive mathematical modeling techniques. My modeling re-
sults were consistent with those of Wetterer (2005), but
generated more suitable areas for A. gracilipes. In the
present study, the ant was not only shown to invade tropi-
cal forests, but also had suitable ranges in temporal
ecosystems, for example south China, southeastern areas
of the US and the Himalayas (Figs. 1A, B and C).

Fifth, | suggest that the high susceptible areas for this
insect aremainly Australia, Asia, Africaand South America.
Areas that have high biological diversity should be fo-
cused upon in order to prevent this insect from being
introduced. The complexity of ecosystemsin biodiversity
hotspots (Myers et al. 2000) provide composite ecologi-
cal conditions for the propagation of exotic species;
therefore, the controlling strategy and risk assessment of
biodiversity hotspots might be helpful in the management
of this ant species. Thisis apotential implication of eco-
logical niche modeling to invasive pest controlling, be-
cause we could readily identify the overlapping regions
between important conservation areas (typically
biodiversity hotspots) and the predicted highest risking
areas, and correspondingly set up new monitoring
strategies.

Sixth, although | have presented the prediction from
three climatic sequences using three agorithms, | acknowl-
edge that it is still difficult to determine a final future
scenario. Lester (2005) argued that New Zealand was too
cold to alow the permanent establishment of A. gracilipes.
However, in the present study, parts of New Zealand are
predicted as suitable for the survival of the insect, despite
the probability not being high (Figs. 1A, B and C). A simi-
lar situation also occursin Australia. The Australian Gov-
ernment (2006), has predicted that northern and eastern
parts of Australia are suitable for this ant; however, my
modeling did not predict the occurrence of A. gracilipes
in Australia under current climatic conditions. One pos-
sible reason for this discrepancy isthe influence of envi-
ronmental variable selection (Heikkinen et al. 2006; Poyry
et al. 2007) as selecting different environmental layersin
building modelswould significantly affect thefinal output.
Each environmental variable has its own characteristics
and often the correlation between these is not strong, this
leadsto differencesin the model -building process between
studies.

Limitations of the present study

One possible limitation of the models under three cli-
matic scenariosisaviolation of the ‘ niche conservatism’
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hypothesis(Wiens& Graham 2005; Hoffmann 2005; Yesson
& Culham 2006a, 2006b). Biotic interactions, evolutionary
change and environmental disorders may disable niche
conservatism (Araujo & Luoto 2007; Fitzpatrick et al. 2007)
and therefore lead to uncertainty of ecological niche mod-
eling in ancestral niche and future climatic change
modeling. Generally, the dramatic environmental change
eventswill significantly cause the disorder of niche con-
servatism and invalidate ecological niche modeling. A re-
cent typical exampleisthe snow damage that occurred in
Chinalate 2007. Some mammalian speciesin southern prov-
inces are now thought to be extinct due to the extreme
cold temperatures experienced during that time (Wildlife
Conservation Society China Program 2008). Thisexempli-
fies the uncertainty of niche conservatism and the
unpredictability of past and future models. However, when
theaimisto predict a course of potentia distribution at a
global scale, some environmental disorders and biotic in-
teractions at |lesser regional scales can be ignored.
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